Morphogenetic furrow initiation and progression during eye development in Drosophila: the roles of decapentaplegic, hedgehog and eyes absent.
نویسندگان
چکیده
The Drosophila signaling factor decapentaplegic (dpp) mediates the effects of hedgehog (hh) in tissue patterning by regulating the expression of tissue-specific genes. In the eye disc, the transcription factors eyeless (ey), eyes absent (eya), sine oculis (so) and dachshund (dac) participate with these signaling molecules in a complex regulatory network that results in the initiation of eye development. Our analysis of functional relationships in the early eye disc indicates that hh and dpp play no role in regulating ey, but are required for eya, so and dac expression. We show that restoring expression of eya in loss-of-function dpp mutant backgrounds is sufficient to induce so and dac expression and to rescue eye development. Thus, once expressed, eya can carry out its functions in the absence of dpp. These experiments indicate that dpp functions downstream of or in parallel with ey, but upstream of eya, so and dac. Additional control is provided by a feedback loop that maintains expression of eya and so and includes dpp. The fact that exogenous overexpression of ey, eya, so and dac interferes with wild-type eye development demonstrates the importance of such a complicated mechanism for maintaining proper levels of these factors during early eye development. Whereas initiation of eye development fails in either Hh or Dpp signaling mutants, the subsequent progression of the morphogenetic furrow is only slowed down. However, we find that clones that are simultaneously mutant for Hh and Dpp signaling components completely block furrow progression and eye differentiation, suggesting that Hh and Dpp serve partially redundant functions in this process. Interestingly, furrow-associated expression of eya, so and dac is not affected by double mutant tissue, suggesting that some other factor(s) regulates their expression during furrow progression.
منابع مشابه
wingless inhibits morphogenetic furrow movement in the Drosophila eye disc.
Differentiation of the Drosophila eye imaginal disc is an asynchronous, repetitive process which proceeds across the disc from posterior to anterior. Its propagation correlates with the expression of decapentaplegic at the front of differentiation, in the morphogenetic furrow. Both differentiation and decapentaplegic expression are maintained by Hedgehog protein secreted by the differentiated c...
متن کاملRole of decapentaplegic in initiation and progression of the morphogenetic furrow in the developing Drosophila retina.
Morphogenesis in the Drosophila retina initiates at the posterior margin of the eye imaginal disc by an unknown mechanism. Upon initiation, a wave of differentiation, its forward edge marked by the morphogenetic furrow (MF), proceeds anteriorly across the disc. Progression of the MF is driven by hedgehog (hh), expressed by differentiating photoreceptor cells. The TGF-beta homolog encoded by dec...
متن کاملsmoothened, thickveins and the genetic control of cell cycle and cell fate in the developing Drosophila eye
The Hedgehog and Decapentaplegic pathways have several well-characterized functions in the developing Drosophila compound eye, including initiation and progression of the morphogenetic furrow. Other functions involve control of cell cycle and cell survival as well as cell type specification. Here we have used the mosaic clone analysis of null mutations of the smoothened and thickveins genes (wh...
متن کاملThe regulation of hedgehog and decapentaplegic during Drosophila eye imaginal disc development
The hedgehog signalling pathway is a conserved mechanism which acts in inductive processes in both vertebrate and invertebrate development to direct growth and patterning. In Drosophila, the secreted Hedgehog protein acts as a signal to induce non-autonomous activation in adjacent cells of either the decapentaplegic or wingless genes (both of which encode growth factor-like molecules), via inac...
متن کاملThe EGF receptor and notch signaling pathways control the initiation of the morphogenetic furrow during Drosophila eye development.
The onset of pattern formation in the developing Drosophila retina begins with the initiation of the morphogenetic furrow, the leading edge of a wave of retinal development that transforms a uniform epithelium, the eye imaginal disc into a near crystalline array of ommatidial elements. The initiation of this wave of morphogenesis is under the control of the secreted morphogens Hedgehog (Hh), De...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 127 6 شماره
صفحات -
تاریخ انتشار 2000